Daeil Aqua Co., Ltd. ---- Manufacturer of Industrial & HVAC Cooling Towers

Professional Engineeing Publication < HOME 

Professional Engineeing Publication

 

 

 

 


 

 

 

 

 

2) Sizing of Coupling Shaft

Prior to selecting and ordering a specific type and size of coupling, many related specifications should be reviewed. In advance, you will have to know how the length of shafts are limited per the shaft models.

(1) Maximum DBSE: From above equation the maximum DBSE could be simply calculated as follows;

L2 = (K/ Critical Speed) x (OD2 + ID2)0.5 (Critical Speed = Safety Margin x Rated Motor Speed)

Example, motor rated speed = 1,800 rpm, OD of selected shaft = 6.25 inch, ID of selected shaft = 6.00 inch, K = 7,583,000. Then, the DBSE at 1.40 and 1.35 safety factor is obtained from above equation;

   * Maximum DBSE = {(7,583,000/(1,800 x 1.4) x 6.252 + 62)1/2}0.5 = 161.5 inch at 1.40 of
      service factor

   * Maximum DBSE = {(7,583,000/(1,800 x 1.35) x 6.252 + 62)1/2}0.5 = 164.4 inch at 1.35 of
      service factor

(2) Maximum Horse Power: The maximum horse power at the given motor speed is obtained from below equation.



Where, Torque in Lb-in
            63,024 = Unit Conversion Correction Coefficient

(3) Procedure of Selecting Optimum Models

A. Calculation of Basic Application Torque (BAT): Calculate BAT first in accordance with below formulas:

   * English Unit BAT = (63,024 x HP of Motor) ?RPM of Motor (Lb-in)
   * Metric Unit BAT = (974 x KW of Motor) ?RPM of Motor (Lb-in)

B. Determine Design Torque: BAT x Service Factor (Generally 2.0 in cooling tower) 

C. Calculating of DBSE: DBSE of shaft = 12 x (Fan Diameter * 2) - (Distance between of Center of Gear Reducer and End of High Speed Shaft) + (Distance between Tip of Fan Blade and End of Motor Shaft) 

D. Selecting Models: Select the coupling size equal to or greater torque which provides a continuous torque at the given service factor, and which satisfy the DBSE.

E. Checking Maximum Bore Sizes: After selecting the coupling size, check the bores of gear and motor shaft couplings. If the bore sizes you specified are larger than the maximum bore of selected coupling model, you have to increase the coupling size to satisfy your specified bores.

F. Checking Frequency Safety Margin with BPF per previously described lateral critical speed.

We are selecting the coupling shafts per our own developed computer programs and are usually providing the calculation data sheet when to propose the shaft quotation. Refer to the attached data sheet for your reference. When you see it, you will have to check the resonant frequency especially.

3) Sample Calculation

Let's look at a typical case of shaft selection for the following design conditions.

   - Fan Diameter: 30 feet 
   - Number of Fan Blade: 8 each
   - Fan BHP: 144.1/41.7 HP 
   - Fan Speed: 126.4/84.3 RPM 
   - Motor HP: 175/60 HP 
   - Motor Speed: 1,770/1,180 RPM 
   - DBSE: 163.970 inch 
   - Service Factor: 2.0 
   - Used Gear Reducer: AGC-1712-14.0

First, determine the basic application torque by taking the following steps and choose the size satisfying the torque & DBSE from the maker's data. Then, check for the critical speed. If everything is OK, the optimum model has been selected.

(1) Calculation of Basic Application Torque & Design Torque

BAT = (63,024 x HP of Motor) ?RPM of Motor (Lb-in) 
        = 63,024 x 175 ?1,770 = 6,231.2 Lb-in 

Design Torque = BAT x Service Factor = 6,231.2 x 2.0 = 12,462.4 Lb-in

(2) Calculation of DBSE: If the DBSE is not given by cooling tower designers, the DBSE can be calculated. 

DBSE = (Fan Diameter * 2) - (Distance between of Center of Gear Reducer and End of High Speed Shaft) + (Distance between Tip of Fan Blade and End of Motor Shaft) 
          = 12 x (30?/ 2) - 33.750?+ 17.720?= 163.970?nbsp;

(3) Selecting Model: Model satisfying above the design torque and DBSE is LMC 500.625. After selecting the coupling size, check the bores of gear and motor shaft couplings. If the bore sizes you specified are larger than the maximum bore of selected coupling model, you have to increase the coupling size to satisfy your specified bores. For the size of bore exceeding the standard size and not exceeding the maximum size, additional cost shall be charged. 

(4) Checking the Frequency Safety Margin: First, the blade passing frequency must be calculated per below, and the critical speed must be calculated, and then must be checked if 1 x BPF, 2 x BPF & 3 x BPF is run within the range of + 5% to - 10% of critical speed.

BPF = (Number of Fan Blade x Fan Speed) 
        = 8 x 126.4 = 1,011.20 CPM 

1 x BPF = 1 x BPF 
              = 1 x 1,011.20 = 1,011.20 CPM 

2 x BPF = 2 x BPF 
              = 2 x 1,011.20 = 2,022.40 CPM 

3 x BPF = 3 x BPF = 3 x 1,011.20 = 3,033.60 CPM 

Critical Speed = (K / DBSE2) x (OD2 + ID2)0.5 = (7,583,000 ?163.9702) x (6.252 + 6.002)0.5 = 2,443.56 CPM 

+ 5% Critical Speed = 1.05 x Critical Speed 
                                 = 1.05 x 2,443.56 = 2,565.74 CPM 

- 10% Critical Speed = 0.9 x Critical Speed 
                                  = 0.9 x 2,443.56 = 2,199.20 CPM 

Any blade passing frequencies are not within the range of 2,199.20 to 2,565.74 CPM. Therefore, this selection is fine to operate the shaft at above design conditions. Finally, the minimum resonant frequency margin can be calculated as follows; blade passing frequency which is most close to the critical speed is 2 x BPF. 

Resonant Frequency Margin = (Critical Speed - 2 x BPF) / Critical Speed x 100 (%) 
                                             = (2,443.56 - 2,022.40) / 2,443.56 x 100 = 17.235 % 

(5) Multi Speed Operation: If the motor is controlled by two speed, the shaft selection must be checked against the both speeds. In general, the type of fan torque is variable so that the motor must have the type of variable torque. Accordingly, the selection of shaft at the high speed satisfies the continuous torque at the low speed. However, the resonant frequency safety must be checked if the blade passing frequency is not in the range of critical speed. 

BAT = (63,024 x HP of Motor) / RPM of Motor (Lb-in) 
        = 63,024 x 60 ?1,180 = 2,304.6 Lb-in 

Design Torque = BAT x Service Factor 
                        = 3,204.6 x 2.0 = 6,409.2 Lb-in 

LMC 500.625 selected is satisfying this torque at the 1,200 RPM of motor speed and the 163.970?of DBSE. The next to do is to checking the resonant frequency safety margin. 

BPF = (Number of Fan Blade x Fan Speed) 
        = 8 x 84.3 = 674.40 CPM 

1 x BPF = 1 x BPF = 1 x 674.40 = 674.40 CPM 

2 x BPF = 2 x BPF = 2 x 674.40 = 1,348.80 CPM 

3 x BPF = 3 x BPF = 3 x 674.40 = 2,023.20 CPM 

Critical Speed = (K / DBSE2) x (OD2 + ID2)0.5 
                       = (7,583,000 / 163.9702) x (6.252 + 6.002)0.5 
                       = 2,443.56 CPM 

+ 5% Critical Speed = 1.05 x Critical Speed 
                                  = 1.05 x 2,443.56 = 2,565.74 CPM 

- 10% Critical Speed = 0.9 x Critical Speed 
                                   = 0.9 x 2,443.56 = 2,199.20 CPM 

Any blade passing frequencies are not within the range of 2,199.20 to 2,565.74 CPM. Therefore, also this selection does not matter to operate the shaft at above design conditions. Finally, the minimum resonant frequency margin can be calculated as follows; blade passing frequency which is most close to the critical speed is 3 x BPF.

Resonant Frequency Margin = (Critical Speed - 3 x BPF) / Critical Speed x 100 (%) 
                                               = (2,443.56 - 2,023.20) ?2,443.56 x 100 = 17.203 %